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Abstract 
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We show that if there exists a deterministic oracle that can determine the 

sum of the bits in the binary representation of x when presented with the RSA 

encryption of x, then there exists a probabilistic algorithm using this oracle to 

recover x when presented with the RSA encryption of x. We present a similar 

result for Rabin encryption. 
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I. Introduction 

While an encryption function may be computationally infeasible to invert, it 

may be easy to extract valuable partial information from the encrypted data. 

This problem was first discussed by Micali and Goldwasser1. They devise an 

encryption system for which all non-trivial, easily computed predicates of the 

cleartext are secure under the assumption that determining quadratic residuosity 

modulo composite numbers is hard. However, since this result is not true for the 

RSA or Rabin encryption, it is important to determine what partial information 

is secure for these encryptions. Ben-Or, Chor, and Shamir2 discuss the least 

significant bit predicate and show that it is as secure for both the RSA and 

Rabin encryptions as the encryptions themselves. In our paper we consider the 

sum of bits predicate and show that it is secure in the same sense. 

Blum, Blum, and Shub3 have designed a pseudo-random number generator 

using the least significant bit of a Rabin encryption. We believe that our result 

might be used to form the basis of a pseudo-random number generator which will 

be faster asymptotically than any current algorithm. The number of bits in the 

binary representation of the sum of the bits of x is lg lg x, but is only 1 for the 

least significant bit of x; thus one might be able to build faster pseudo-random 

number generators. 

Our main result is the following theorem: 

Theorem: If there exists a deterministic oracle, Sum Of Bits: 

Input: The encryption EN(x) where xis chosen from ZN, and EN(x) 

is either the RSA or Rabin encryption of x. 

Output: E( X), the sum of bits in the binary representation or X' 

then there exists a probabilistic algorithm A: 

Input: EN(x), N 

Output: x. 

Furthermore, this algorithm runs in random polynomial time in the length of N. 



3 

In this paper we will present this algorithm and a proof of its correctness. Our 

paper makes use of the Ben-Or, Chor, Shamir result: 

Let OL be a deterministic oracle that on input EN(x) can guess the least 

significant bit of x, such that for a random x in ZN the probability that OL will 

err is at most .!. - € (for some fixed E > 0). Then there is a random polynomial-
4 

time algorithm, using OL , that breaks this {:a~~n} encryption. 

2. The Algorithm 

The following algorithm computes a function that is almost the least 

significant bit; we call it ALSB(x). More formally, we compute 

ALSB:ZN--+-{0,1}, a function such that ALSB(x)= least significant bit of x for 

> : + E of the domain, where E is a positive constant to be specified later. 

Procedure ALSB 

Input: N, EN(x) where xis in ZN. 

Output: ALSB(x). 

Algorithm: 

Compute EN(x2-1 mod N) = EN(x) *EN(2-1 mod N) mod N 

Using oracle SOB compute L( x) and L( x2-1 mod N) 

If E(x) =I= E(x2-1 mod N) then output 1 

else output 0 

3. Correctness of the Algorithm 

The intuition behind the correctness of the algorithm is that for even 

x, E( x )=E( x2-1 mod N), and therefore the algorithm is correct for these inputs. 

The hope is that for odd x the algorithm is correct frequently enough to guaran­

tee the necessary probability overall. The remainder of this section is devoted to 

proving the following lemma. 
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Lemma 1: Let N rf 21-1 be an odd integer. For at least ..!.. + i of the odd 
2 

Throughout this paper k will denote 2-1 mod N = N + 1 
Furthermore, for any 

2 

odd xEZN, r=r(x) will be an element of Z N-1 such that x=2r+ 1. We now 

prove a few useful facts about odd x 's. 

Fact 1: E(x)=E(r) + 1. 

Proof: Obvious. 

Fact 2: E(x2-1 mod N)=E(r+ k). 

2 

Proof: Using straightforward manipulations we see that 

x2-1 mod N = (2r+ 1)( N+ 1 ) mod N = rN+ r+ N+ 1 mod N 
2 2 

=(r+ k) mod N. 

N-2 N-2 N+ 1 
Since x < N-1, r < and r+ k < + < N. Hence, 

2 2 2 

( r + k) mod N = r + k. 

Combining these two facts we obtain the following: 

Fact 3: E(x)=E(x2-1 mod N) if and only if E(r)+ 1 = E(r+ k). 

If x and y are non-negative integers, let C( x ,y) denote the number of carries 

induced by the binary addition of x and y. Consider the following example: 

1 111 

x = 1710= 100012 

x+ y = 4010= 1010002. 
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Note that in the above example, ~(x) = 2, 'E(y) = 4, C(x,y) = 4 and 

~(x+ y) = 2, and thus C(x,y) + ~(x+ y) = ~(x) + ~(y). In fact, this equal­

ity always holds. 

Lemma 2: C(x,y) + ~(x + y) = ~(x) + ~(y). 

The reader can verify the lemma by considering corresponding binary positions in 

x, y, (x+ y) and the carries into and out of that position. "Ve use Lemma 2 to 

convert the original problem to a more convenient form. Combining Fact 3 and 

Lemma 2 we obtain the following corollary. 

Corollary: ~(x)=~(x2-1 mod N) if and only if ~(k) = C(k,r)+ 1. 

We wish to bound the number of odd x for which ALSB(x) ~ LSB(x). Since we 

are interested in 

{odd xEZN I ~(x)=~(x2-1 mod N)}, 

we define 

N-3 
B(k) = {r I ~(k)=C(k,r)+ 1, where 0 < r < -?- = k- 2} . 

... 

We wish to prove for all odd N, N ~ 21 - 1, that I B(k) I < (! -E)k for some 

fixed f > 0. Since k=2l-l if and only if N=21-1, it follows that E(k)=1 if and 

only if N=21-l. Therefore, if N~21 -1 then Ort_B(k), since C(k,O)=O and 

~( k) ~ 1. This enables us to restrict r to the range 1 < r < k - 2. We now 

consider the following superset of B( k ), B • ( k ): 

B•(k) = {r I E(k) = C(k,r) + 1, where 1 < r < k}. 

\Ve are also interested in the fraction b(k) = I B·~k) I . Since the fraction of odd 

inputs for which the algorithm answers incorrectly is at most b ( k ), it is sufficient 

to show b(k) < ! -f fork ~ 21- 1 . 
... 

Claim: b(k)=b(2/c). 

Proof: Note that k rt_ B•(k); with this restriction it follows that rEB.(k) if and 
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only if both 2rEB.(2k) and 2r+ 1 E B•(2k). This follows from considering the 

binary representations of r, 2r, and 2r+ 1. Since both 2r and 2r+ 1 are 

EB.(2k) or neither are, b(k)=b(2k) follows. 

1 
Thus we are only required to prove that b(k) < (2- E), for some fixed f > 0, 

for odd k > 3. 

Lemma 3: Let r be an even integer in B•(k), for some odd k > 3. If rEB.(k) 

then r+ 1 rf. B •(k ). 

Proof: Assume rEB.(k), so that E(k)- C(r,k) = 1. We will show that 

C( r ,k) ~ C( r+ 1,k ), which proves the claim. Since k is odd and r is even there 

is no carry out of the least significant bit when adding r and k. However, when 

adding r+ 1 and k there is a carry out of the least significant bit. In fact this 

carry propagates up to the least significant bit position such that r and k are 0 

in that position. To the left of this position the carries are identical and to the 

right of this position there is a strictly greater number of carries when adding 

r+ 1 and k than when adding r and k. 

Using the fact that 1rf.B.(k), we can conclude that fork ~21 - 1 , b(k) < ~· 

Now we will construct a constant f such that b ( k) < ~ - f. We do a case 

analysis on the form of the binary representation of k. 

We first consider two very general cases; after this the remaining scattered 

cases will be dealt with in a ad hoc fashion. Our notation for describing these 

cases is borrowed from formal language theory. 

Suppose that k=1{0,1}110{0,1}m01 for some 1>1 and m>O. Consider the 

proof that b(k)<!. Since 1rt.B•(k), we pair off the numbers [2,3], [4,5] up to 

[k-1,k]. (Recall that k is odd.) By Lemma 3, we know that for every pair at most 

one of each pair is in B • ( k ), that is, bad. In order to prove that b ( k) < ! - E, we .. 
need to show that for a fixed fraction of the pairs, neither number in the pair is 

bad. Suppose that [r ,r+ 1] is a pair where one of r and r+ 1 is bad. Further 

assume that r is of the form, Ox03 yOO where xE{O,l} 1- 1 and yE{O,l}m. Consider 
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the pair [r' ,r' + 1] where r' =OxllOyOO. It is not hard to verify that 

C(r ,k)< C(r ,k)+ l=C(r+ l,k)< C(r' ,k)=C( r' + l,k)-1< C(r' + l,k). 

These inequalities guarantee that if either of r or r+ 1 is bad, then neither of r' 

and r' + 1 is bad. One can show that this procedure is in fact a 1-1 mapping 

between pairs of the appropriate forms. As a result, this mapping proves that for 

1/32 of the pairs, neither number is bad. This proves that an additional 1/64 of 

the numbers are not in B*(k); thus b(k)< ~ -
6
1
4 

fork of the form given above. 

For k of the form 1{0,1}110{0,1}mll with 1>1 and m>O, the proof is 

nearly identical. The only difference is that we consider [ r, r+ 1] pairs with r of 

the form lxOOOylO, where xE{0,1}1- 1 and yE{O,l}m. In this case, the [r ,r+ 1] 

pairs get mapped to [ r' ,r' + 1] pairs, with r' of the form 1xl10y 10. 

It remains to consider the values of k that are not covered by the previous 

two cases. We can show that the remaining possibilities can be summarized by 

the following six cases: 

1. k=11; 

2. k=1101; 

3. k=101lm; 

4. k=l011 mol; 

5. k=ll011 m; 

6. k=ll011 mol; 

where I, m > 1 for each of these cases. It is tedious but not difficult to show that 

for each of these cases b (k) < .!_ - _!_, 
- 2 64 

4. Conclusions 

In this paper we have proved that determining the sum of bits of the clear­

text, given only the RSA (Rabin) encryption, is as difficult as decrypting. It is 

significant to note that we have actually proved something slightly stronger. The 

oracle need not always be correct; in particular the oracle may lie on a fixed frac-

tion 8 of the inputs, where 8 < - 1
-. Recently, V azirani and Vazirani4 have 

256 

claimed an improvement in the Ben-Or, Chor, Shamir bound of .!_ - E. This 
4 

result allows us to use an oracle that lies a greater percentage of the time. 
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